Dijkstra算法
约 94 个字 64 行代码 1 张图片 预计阅读时间 1 分钟
技巧:
如果图为无向图(有向图反转)且不存在负边,要求求各个点 i 到同一终点 n 的最短路径,可以设置Dijkstra的起点和终点 均为 n,求解得到的 distance 数组即 各个点 i 到终点 n 的最短距离。
以743. 网络延迟时间为例
Dijkstra算法模版
Java 题解:
Java |
---|
| class Solution {
public int networkDelayTime(int[][] times, int n, int s) {
ArrayList<ArrayList<int[]>> graph = new ArrayList<>();
// 节点下标为 1 - n
for (int i = 0; i <= n; i++) {
graph.add(new ArrayList<>());
}
for (int[] edge : times) {
graph.get(edge[0]).add(new int[]{edge[1], edge[2]});
}
int[] distance = new int[n + 1];
Arrays.fill(distance, Integer.MAX_VALUE);
distance[s] = 0;
boolean[] visted = new boolean[n + 1];
PriorityQueue<int[]> heap = new PriorityQueue<>((a, b) -> a[1] - b[1]);
heap.add(new int[]{s, 0});
while (!heap.isEmpty()) {
int u = heap.poll()[0];
if (visted[u]) {
continue;
}
visted[u] = true;
for (int[] edge : graph.get(u)) {
int v = edge[0];
int w = edge[1];
if (!visted[v] && distance[u] + w < distance[v]) {
distance[v] = distance[u] + w;
heap.add(new int[] {v, distance[u] + w});
}
}
}
int ans = Integer.MIN_VALUE;
for (int i = 1; i <= n; i++) {
if (distance[i] == Integer.MAX_VALUE) {
return -1;
}
ans = Math.max(ans, distance[i]);
}
return ans;
}
}
|
Python 题解:
Python |
---|
| class Solution:
def networkDelayTime(self, times: List[List[int]], n: int, s: int) -> int:
graph = [[] for _ in range(n + 1)]
for u, v, w in times:
graph[u].append((v, w))
distance = [inf for _ in range(n + 1)]
distance[s] = 0
visited = [False for _ in range(n + 1)]
heap = [(0, s)]
while heap:
_, u = heappop(heap)
if visited[u]:
continue
visited[u] = True
for v, w in graph[u]:
if not visited[v] and distance[u] + w < distance[v]:
distance[v] = distance[u] + w
heappush(heap, (distance[v], v))
ans = max(distance[1:])
return ans if ans < inf else -1
|